Anomalous behaviour detection based on heterogeneous data and data fusion
In this paper, we propose a new approach to identify anomalous behaviour based on heterogeneous data and a data fusion technique. There are four types of datasets applied in this study including credit card, loyalty card, GPS, and image data. The first step of the complete framework in this proposed...
出版年: | Soft Computing |
---|---|
第一著者: | Ali A.M.; Angelov P. |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer Verlag
2018
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040059834&doi=10.1007%2fs00500-017-2989-5&partnerID=40&md5=e3c98ef17ab2e1211bda7bbaa2912bb8 |
類似資料
-
Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies
著者:: Liyuan Y.; Osman G.; Abdul Rahman S.; Mustapha M.F.
出版事項: (2024) -
Integrating and retrieving learning analytics data from heterogeneous platforms using ontology alignment: Graph-based approach
著者:: Musa, 等
出版事項: (2025) -
Performance Analysis of Heterogeneous Data Transmission in 5G C-V2N Communication
著者:: 2-s2.0-85146734702
出版事項: (2022) -
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model
著者:: 2-s2.0-85199751285
出版事項: (2025) -
Developing an Integrative Data Intelligence Model for Construction Cost Estimation
著者:: Ali Z.H.; Burhan A.M.; Kassim M.; Al-Khafaji Z.
出版事項: (2022)