Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers
Tides and seasonally varying inland freshwater input, with different fluctuation periods, are important factors affecting flow and salt transport in coastal unconfined aquifers. These processes affect submarine groundwater discharge (SGD) and associated chemical transport to the sea. While the indiv...
Published in: | Water Resources Research |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Blackwell Publishing Ltd
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075153380&doi=10.1029%2f2018WR024492&partnerID=40&md5=0c1af0e3dac43a8db5ca473df3202f7a |
id |
2-s2.0-85075153380 |
---|---|
spelling |
2-s2.0-85075153380 Kuan W.K.; Xin P.; Jin G.; Robinson C.E.; Gibbes B.; Li L. Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers 2019 Water Resources Research 55 11 10.1029/2018WR024492 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075153380&doi=10.1029%2f2018WR024492&partnerID=40&md5=0c1af0e3dac43a8db5ca473df3202f7a Tides and seasonally varying inland freshwater input, with different fluctuation periods, are important factors affecting flow and salt transport in coastal unconfined aquifers. These processes affect submarine groundwater discharge (SGD) and associated chemical transport to the sea. While the individual effects of these forcings have previously been studied, here we conducted physical experiments and numerical simulations to evaluate the interactions between varying inland freshwater input and tidal oscillations. Varying inland freshwater input was shown to induce significant water exchange across the aquifer-sea interface as the saltwater wedge shifted landward and seaward over the fluctuation cycle. Tidal oscillations led to seawater circulations through the intertidal zone that also enhanced the density-driven circulation, resulting in a significant increase in the total SGD. The combination of the tide and varying inland freshwater input, however, decreased the SGD components driven by the separate forcings (e.g., tides and density). Tides restricted the landward and seaward movement of the saltwater wedge in response to the varying inland freshwater input in addition to reducing the time delay between the varying freshwater input signal and landward-seaward movement in the saltwater wedge interface. This study revealed the nonlinear interaction between tidal fluctuations and varying inland freshwater input will help to improve our understanding of SGD, seawater intrusion, and chemical transport in coastal unconfined aquifers. ©2019. American Geophysical Union. All Rights Reserved. Blackwell Publishing Ltd 431397 English Article |
author |
Kuan W.K.; Xin P.; Jin G.; Robinson C.E.; Gibbes B.; Li L. |
spellingShingle |
Kuan W.K.; Xin P.; Jin G.; Robinson C.E.; Gibbes B.; Li L. Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
author_facet |
Kuan W.K.; Xin P.; Jin G.; Robinson C.E.; Gibbes B.; Li L. |
author_sort |
Kuan W.K.; Xin P.; Jin G.; Robinson C.E.; Gibbes B.; Li L. |
title |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
title_short |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
title_full |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
title_fullStr |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
title_full_unstemmed |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
title_sort |
Combined Effect of Tides and Varying Inland Groundwater Input on Flow and Salinity Distribution in Unconfined Coastal Aquifers |
publishDate |
2019 |
container_title |
Water Resources Research |
container_volume |
55 |
container_issue |
11 |
doi_str_mv |
10.1029/2018WR024492 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075153380&doi=10.1029%2f2018WR024492&partnerID=40&md5=0c1af0e3dac43a8db5ca473df3202f7a |
description |
Tides and seasonally varying inland freshwater input, with different fluctuation periods, are important factors affecting flow and salt transport in coastal unconfined aquifers. These processes affect submarine groundwater discharge (SGD) and associated chemical transport to the sea. While the individual effects of these forcings have previously been studied, here we conducted physical experiments and numerical simulations to evaluate the interactions between varying inland freshwater input and tidal oscillations. Varying inland freshwater input was shown to induce significant water exchange across the aquifer-sea interface as the saltwater wedge shifted landward and seaward over the fluctuation cycle. Tidal oscillations led to seawater circulations through the intertidal zone that also enhanced the density-driven circulation, resulting in a significant increase in the total SGD. The combination of the tide and varying inland freshwater input, however, decreased the SGD components driven by the separate forcings (e.g., tides and density). Tides restricted the landward and seaward movement of the saltwater wedge in response to the varying inland freshwater input in addition to reducing the time delay between the varying freshwater input signal and landward-seaward movement in the saltwater wedge interface. This study revealed the nonlinear interaction between tidal fluctuations and varying inland freshwater input will help to improve our understanding of SGD, seawater intrusion, and chemical transport in coastal unconfined aquifers. ©2019. American Geophysical Union. All Rights Reserved. |
publisher |
Blackwell Publishing Ltd |
issn |
431397 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678159955623936 |