Short- And long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians: A machine learning approach

Background Conventional risk score for predicting short and long-term mortality following an ST-segment elevation myocardial infarction (STEMI) is often not population specific. Objective Apply machine learning for the prediction and identification of factors associated with short and long-term mort...

全面介紹

書目詳細資料
發表在:PLoS ONE
主要作者: Aziz F.; Malek S.; Ibrahim K.S.; Shariff R.E.R.; Wan Ahmad W.A.; Ali R.M.; Liu K.T.; Selvaraj G.; Kasim S.
格式: Article
語言:English
出版: Public Library of Science 2021
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111752632&doi=10.1371%2fjournal.pone.0254894&partnerID=40&md5=9d14f97072c76e3d651fd6d08db7b64f
實物特徵
總結:Background Conventional risk score for predicting short and long-term mortality following an ST-segment elevation myocardial infarction (STEMI) is often not population specific. Objective Apply machine learning for the prediction and identification of factors associated with short and long-term mortality in Asian STEMI patients and compare with a conventional risk score. Methods The National Cardiovascular Disease Database for Malaysia registry, of a multi-ethnic, heterogeneous Asian population was used for in-hospital (6299 patients), 30-days (3130 patients), and 1-year (2939 patients) model development. 50 variables were considered. Mortality prediction was analysed using feature selection methods with machine learning algorithms and compared to Thrombolysis in Myocardial Infarction (TIMI) score. Invasive management of varying degrees was selected as important variables that improved mortality prediction. Results Model performance using a complete and reduced variable produced an area under the receiver operating characteristic curve (AUC) from 0.73 to 0.90. The best machine learning model for in-hospital, 30 days, and 1-year outperformed TIMI risk score (AUC = 0.88, 95% CI: 0.846-0.910; vs AUC = 0.81, 95% CI:0.772-0.845, AUC = 0.90, 95% CI: 0.870-0.935; vs AUC = 0.80, 95% CI: 0.746-0.838, AUC = 0.84, 95% CI: 0.798-0.872; vs AUC = 0.76, 95% CI: 0.715-0.802, p < 0.0001 for all). TIMI score underestimates patients' risk of mortality. 90% of non-survival patients are classified as high risk (>50%) by machine learning algorithm compared to 10-30% non-survival patients by TIMI. Common predictors identified for short- and long-term mortality were age, heart rate, Killip class, fasting blood glucose, prior primary PCI or pharmaco-invasive therapy and diuretics. The final algorithm was converted into an online tool with a database for continuous data archiving for algorithm validation. Conclusions In a multi-ethnic population, patients with STEMI were better classified using the machine learning method compared to TIMI scoring. Machine learning allows for the identification of distinct factors in individual Asian populations for better mortality prediction. Ongoing continuous testing and validation will allow for better risk stratification and potentially alter management and outcomes in the future. Copyright: © 2021 Aziz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ISSN:19326203
DOI:10.1371/journal.pone.0254894