Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model

Introductory Engineering Mathematics (a skill builder for engineers) involves developing problem-solving attributes throughout the teaching period. Therefore, the prediction of students’ final course grades with continuous assessment marks is a useful toolkit for degree program educators. Predictive...

Full description

Bibliographic Details
Published in:Sustainability (Switzerland)
Main Author: Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
Format: Article
Language:English
Published: MDPI 2022
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138990088&doi=10.3390%2fsu141711070&partnerID=40&md5=7d11f8bfc3078e0ad949b6da23008121
id 2-s2.0-85138990088
spelling 2-s2.0-85138990088
Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
2022
Sustainability (Switzerland)
14
17
10.3390/su141711070
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138990088&doi=10.3390%2fsu141711070&partnerID=40&md5=7d11f8bfc3078e0ad949b6da23008121
Introductory Engineering Mathematics (a skill builder for engineers) involves developing problem-solving attributes throughout the teaching period. Therefore, the prediction of students’ final course grades with continuous assessment marks is a useful toolkit for degree program educators. Predictive models are practical tools used to evaluate the effectiveness of teaching as well as assessing the students’ progression and implementing interventions for the best learning outcomes. This study develops a novel multivariate adaptive regression spline (MARS) model to predict the weighted score (Formula presented.) (i.e., the course grade). To construct the proposed MARS model, Introductory Engineering Mathematics performance data over five years from the University of Southern Queensland, Australia, were used to design predictive models using input predictors of online quizzes, written assignments, and examination scores. About 60% of randomised predictor grade data were applied to train the model (with 25% of the training set used for validation) and 40% to test the model. Based on the cross-correlation of inputs vs. the (Formula presented.), 12 distinct combinations with single (i.e., M1–M5) and multiple (M6–M12) features were created to assess the influence of each on the (Formula presented.) with results bench-marked via a decision tree regression (DTR), kernel ridge regression (KRR), and a k-nearest neighbour (KNN) model. The influence of each predictor on (Formula presented.) clearly showed that online quizzes provide the least contribution. However, the MARS model improved dramatically by including written assignments and examination scores. The research demonstrates the merits of the proposed MARS model in uncovering relationships among continuous learning variables, which also provides a distinct advantage to educators in developing early intervention and moderating their teaching by predicting the performance of students ahead of final outcome for a course. The findings and future application have significant practical implications in teaching and learning interventions or planning aimed to improve graduate outcomes in undergraduate engineering program cohorts. © 2022 by the authors.
MDPI
20711050
English
Article
All Open Access; Gold Open Access
author Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
spellingShingle Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
author_facet Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
author_sort Ahmed A.A.M.; Deo R.C.; Ghimire S.; Downs N.J.; Devi A.; Barua P.D.; Yaseen Z.M.
title Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
title_short Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
title_full Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
title_fullStr Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
title_full_unstemmed Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
title_sort Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model
publishDate 2022
container_title Sustainability (Switzerland)
container_volume 14
container_issue 17
doi_str_mv 10.3390/su141711070
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138990088&doi=10.3390%2fsu141711070&partnerID=40&md5=7d11f8bfc3078e0ad949b6da23008121
description Introductory Engineering Mathematics (a skill builder for engineers) involves developing problem-solving attributes throughout the teaching period. Therefore, the prediction of students’ final course grades with continuous assessment marks is a useful toolkit for degree program educators. Predictive models are practical tools used to evaluate the effectiveness of teaching as well as assessing the students’ progression and implementing interventions for the best learning outcomes. This study develops a novel multivariate adaptive regression spline (MARS) model to predict the weighted score (Formula presented.) (i.e., the course grade). To construct the proposed MARS model, Introductory Engineering Mathematics performance data over five years from the University of Southern Queensland, Australia, were used to design predictive models using input predictors of online quizzes, written assignments, and examination scores. About 60% of randomised predictor grade data were applied to train the model (with 25% of the training set used for validation) and 40% to test the model. Based on the cross-correlation of inputs vs. the (Formula presented.), 12 distinct combinations with single (i.e., M1–M5) and multiple (M6–M12) features were created to assess the influence of each on the (Formula presented.) with results bench-marked via a decision tree regression (DTR), kernel ridge regression (KRR), and a k-nearest neighbour (KNN) model. The influence of each predictor on (Formula presented.) clearly showed that online quizzes provide the least contribution. However, the MARS model improved dramatically by including written assignments and examination scores. The research demonstrates the merits of the proposed MARS model in uncovering relationships among continuous learning variables, which also provides a distinct advantage to educators in developing early intervention and moderating their teaching by predicting the performance of students ahead of final outcome for a course. The findings and future application have significant practical implications in teaching and learning interventions or planning aimed to improve graduate outcomes in undergraduate engineering program cohorts. © 2022 by the authors.
publisher MDPI
issn 20711050
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1814778503983267840