The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study

Modifying LiFePO4 with anion doping can improve the electrochemical performance of lithium-ion batteries. Here, theoretical work of Cl-doped LiFePO4 is performed using density functional theory (DFT) to calculate the structural, electronic properties and Li-ion migration. The substitution of chlorin...

Full description

Bibliographic Details
Published in:Computational and Theoretical Chemistry
Main Author: Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
Format: Article
Language:English
Published: Elsevier B.V. 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146258954&doi=10.1016%2fj.comptc.2023.114029&partnerID=40&md5=596b5e0f420ce7e42918b6d556f75873
id 2-s2.0-85146258954
spelling 2-s2.0-85146258954
Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
2023
Computational and Theoretical Chemistry
1221

10.1016/j.comptc.2023.114029
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146258954&doi=10.1016%2fj.comptc.2023.114029&partnerID=40&md5=596b5e0f420ce7e42918b6d556f75873
Modifying LiFePO4 with anion doping can improve the electrochemical performance of lithium-ion batteries. Here, theoretical work of Cl-doped LiFePO4 is performed using density functional theory (DFT) to calculate the structural, electronic properties and Li-ion migration. The substitution of chlorine for oxygen has expanded the LiFePO4 lattice due to the larger Cl- ions ionic radii. Cl doping also contributes to the band gap reduction, indicating the material exhibits better electronic conductivity. The migration energy for Li-ion migration has decreased from 0.838 eV to 0.709 eV upon Cl doping. These doping effects imply that LiFePO4 has improved the electrochemical performance of lithium-ion batteries. © 2023 Elsevier B.V.
Elsevier B.V.
2210271X
English
Article

author Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
spellingShingle Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
author_facet Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
author_sort Zaki N.H.M.; Ahmad S.I.; Sazman F.N.; Badrudin F.W.; Abdullah A.L.A.; Taib M.F.M.; Hassan O.H.; Yahya M.Z.A.
title The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
title_short The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
title_full The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
title_fullStr The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
title_full_unstemmed The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
title_sort The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study
publishDate 2023
container_title Computational and Theoretical Chemistry
container_volume 1221
container_issue
doi_str_mv 10.1016/j.comptc.2023.114029
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146258954&doi=10.1016%2fj.comptc.2023.114029&partnerID=40&md5=596b5e0f420ce7e42918b6d556f75873
description Modifying LiFePO4 with anion doping can improve the electrochemical performance of lithium-ion batteries. Here, theoretical work of Cl-doped LiFePO4 is performed using density functional theory (DFT) to calculate the structural, electronic properties and Li-ion migration. The substitution of chlorine for oxygen has expanded the LiFePO4 lattice due to the larger Cl- ions ionic radii. Cl doping also contributes to the band gap reduction, indicating the material exhibits better electronic conductivity. The migration energy for Li-ion migration has decreased from 0.838 eV to 0.709 eV upon Cl doping. These doping effects imply that LiFePO4 has improved the electrochemical performance of lithium-ion batteries. © 2023 Elsevier B.V.
publisher Elsevier B.V.
issn 2210271X
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809677888287408128