Leptospirosis modelling using hydrometeorological indices and random forest machine learning
Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive capacity are still little known. In this study, the use o...
الحاوية / القاعدة: | International Journal of Biometeorology |
---|---|
المؤلف الرئيسي: | Jayaramu V.; Zulkafli Z.; De Stercke S.; Buytaert W.; Rahmat F.; Abdul Rahman R.Z.; Ishak A.J.; Tahir W.; Ab Rahman J.; Mohd Fuzi N.M.H. |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Springer Science and Business Media Deutschland GmbH
2023
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147099122&doi=10.1007%2fs00484-022-02422-y&partnerID=40&md5=45d6a53b17ce1fe5ee7b4af6a73117ce |
مواد مشابهة
-
Leptospirosis modelling using hydrometeorological indices and random forest machine learning
بواسطة: 2-s2.0-85147099122
منشور في: (2023) -
The classification of EEG-based winking signals: A transfer learning and random forest pipeline
بواسطة: Mahendra Kumar J.L.; Rashid M.; Musa R.M.; Mohd Razman M.A.; Sulaiman N.; Jailani R.; Abdul Majeed A.P.P.
منشور في: (2021) -
A sound event detection based on hybrid convolution neural network and random forest
بواسطة: Afendi M.A.S.M.; Yusoff M.
منشور في: (2022) -
Cardiac haemorrhage: An extreme presentation of leptospirosis
بواسطة: Razuin R.; Nurquin F.S.; Nur A.A.R.P.; Julina M.N.
منشور في: (2020) -
Predicting Ocean Current Temperature Off the East Coast of America with XGBoost and Random Forest Algorithms Using Rstudio
بواسطة: 2-s2.0-85198048471
منشور في: (2024)