Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering

The hawker industry is known for its diverse food options and affordable prices, but customers often struggle to select their preferred hawker stalls due to the abundance of choices. To address this challenge, this research proposes the integration of business intelligence techniques with a recommen...

Full description

Bibliographic Details
Published in:2023 4th International Conference on Artificial Intelligence and Data Sciences: Discovering Technological Advancement in Artificial Intelligence and Data Science, AiDAS 2023 - Proceedings
Main Author: Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
Format: Conference paper
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176611567&doi=10.1109%2fAiDAS60501.2023.10284691&partnerID=40&md5=bf26add6b197af3d98def49b620cf055
id 2-s2.0-85176611567
spelling 2-s2.0-85176611567
Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
2023
2023 4th International Conference on Artificial Intelligence and Data Sciences: Discovering Technological Advancement in Artificial Intelligence and Data Science, AiDAS 2023 - Proceedings


10.1109/AiDAS60501.2023.10284691
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176611567&doi=10.1109%2fAiDAS60501.2023.10284691&partnerID=40&md5=bf26add6b197af3d98def49b620cf055
The hawker industry is known for its diverse food options and affordable prices, but customers often struggle to select their preferred hawker stalls due to the abundance of choices. To address this challenge, this research proposes the integration of business intelligence techniques with a recommendation marketplace system using content-based filtering. This research aims to enhance the hawker dining experience by providing personalised recommendations based on customer preferences and leveraging data-driven insights. The objectives of this study are to collect and integrate data from various sources, including hawker stall information, customer preferences, and feedback. This research will employ content-based filtering techniques to analyse this data and develop a recommendation engine that suggests hawker stalls and food options aligned with users' preferences and past interactions. Through this integration, this project seeks to derive valuable insights from the collected data, such as identifying popular food categories, analysing customer behaviour, and understanding customer satisfaction levels. These insights will enable us to optimise the recommendation marketplace system, improve operational efficiency, and enhance the overall customer experience. This paper presents a mobile-based recommendation system that allows customers to explore personalised hawker stall recommendations based on their preferences. By integrating business intelligence with a recommendation marketplace system for hawker food, this research contributes to improving the decision-making process for customers, promoting hawker stall visibility and revenue, and creating a personalised and enjoyable dining experience. © 2023 IEEE.
Institute of Electrical and Electronics Engineers Inc.

English
Conference paper

author Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
spellingShingle Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
author_facet Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
author_sort Mishan M.T.; Amir A.L.; Bin Mohd Supir M.H.; Kushan A.L.; Zulkifli N.; Rahmat M.H.
title Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
title_short Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
title_full Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
title_fullStr Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
title_full_unstemmed Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
title_sort Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
publishDate 2023
container_title 2023 4th International Conference on Artificial Intelligence and Data Sciences: Discovering Technological Advancement in Artificial Intelligence and Data Science, AiDAS 2023 - Proceedings
container_volume
container_issue
doi_str_mv 10.1109/AiDAS60501.2023.10284691
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176611567&doi=10.1109%2fAiDAS60501.2023.10284691&partnerID=40&md5=bf26add6b197af3d98def49b620cf055
description The hawker industry is known for its diverse food options and affordable prices, but customers often struggle to select their preferred hawker stalls due to the abundance of choices. To address this challenge, this research proposes the integration of business intelligence techniques with a recommendation marketplace system using content-based filtering. This research aims to enhance the hawker dining experience by providing personalised recommendations based on customer preferences and leveraging data-driven insights. The objectives of this study are to collect and integrate data from various sources, including hawker stall information, customer preferences, and feedback. This research will employ content-based filtering techniques to analyse this data and develop a recommendation engine that suggests hawker stalls and food options aligned with users' preferences and past interactions. Through this integration, this project seeks to derive valuable insights from the collected data, such as identifying popular food categories, analysing customer behaviour, and understanding customer satisfaction levels. These insights will enable us to optimise the recommendation marketplace system, improve operational efficiency, and enhance the overall customer experience. This paper presents a mobile-based recommendation system that allows customers to explore personalised hawker stall recommendations based on their preferences. By integrating business intelligence with a recommendation marketplace system for hawker food, this research contributes to improving the decision-making process for customers, promoting hawker stall visibility and revenue, and creating a personalised and enjoyable dining experience. © 2023 IEEE.
publisher Institute of Electrical and Electronics Engineers Inc.
issn
language English
format Conference paper
accesstype
record_format scopus
collection Scopus
_version_ 1809677683764756480