Multi objective hyperparameter tuning via random search on deep learning models
This research examines the efficacy of random search (RS) in hyperparameter tuning, comparing its performance to baseline methods namely manual search and grid search. Our analysis spans various deep learning (DL) architectures-multilayer perceptron (MLP), convolutional neural network (CNN), and Ale...
Published in: | Telkomnika (Telecommunication Computing Electronics and Control) |
---|---|
Main Author: | Rom A.R.M.; Jamil N.; Ibrahim S. |
Format: | Article |
Language: | English |
Published: |
Universitas Ahmad Dahlan
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197106107&doi=10.12928%2fTELKOMNIKA.v22i4.25847&partnerID=40&md5=90bc795eab60ec217b80b99d8cbfdcde |
Similar Items
-
Hyperparameter tuning and pipeline optimization via grid search method and tree-based autoML in breast cancer prediction
by: Radzi S.F.M.; Karim M.K.A.; Saripan M.I.; Rahman M.A.A.; Isa I.N.C.; Ibahim M.J.
Published: (2021) -
Study on the Correlation of Trainable Parameters and Hyperparameters with the Performance of Deep Learning Models
by: Ong S.-Q.; Isawasan P.; Nair G.; Salleh K.A.; Yusof U.K.
Published: (2023) -
Effect of Hyperparameter Tuning in Long Short-Term Memory for Crude Oil Price Prediction
by: Yusoff M.; Sharif M.Y.; Sallehud-Din M.T.M.
Published: (2024) -
Amplification of pixels in medical image data for segmentation via deep learning object-oriented approach
by: Fadzil A.F.A.; Khalid N.E.A.; Ibrahim S.
Published: (2021) -
A Review on Occluded Object Detection and Deep Learning-Based Approach in Medical Imaging-Related Research
by: Jamaluddin K.R.; Ibrahim S.
Published: (2024)