Hybrid embedded and filter feature selection methods in big-dimension mammary cancer and prostatic cancer data
The feature selection method enhances machine learning performance by enhancing learning precision. Determining the optimal feature selection method for a given machine learning task involving big-dimension data is crucial. Therefore, the purpose of this study is to make a comparison of feature sele...
Published in: | IAES International Journal of Artificial Intelligence |
---|---|
Main Author: | Md Noh S.S.; Ibrahim N.; Mansor M.M.; Md Ghani N.A.; Yusoff M. |
Format: | Article |
Language: | English |
Published: |
Institute of Advanced Engineering and Science
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200038464&doi=10.11591%2fijai.v13.i3.pp3101-3110&partnerID=40&md5=ba3f5442cc256848925d306572475933 |
Similar Items
-
Enhancing big data feature selection using a hybrid correlation-based feature selection
by: Mohamad M.; Selamat A.; Krejcar O.; Crespo R.G.; Herrera-Viedma E.; Fujita H.
Published: (2021) -
Identification of novel biomarkers in prostate cancer diagnosis and prognosis
by: Li W.; Xu W.; Sun K.; Wang F.; Wong T.W.; Kong A.-N.
Published: (2022) -
Feature selection embedded cluster distribution position for characteristic analysis of multi-dimension poverty-stricken households in China
by: Liu H.; Liu Y.; Zhang R.; Liu D.; Zhang Z.
Published: (2021) -
Unveiling the Potential of Prostate-Specific Membrane Antigen for Precision Diagnosis and Therapy of Prostate Cancer: A Radiopharmaceutical Perspective
by: Hassan H.; Othman M.F.; Ashhar Z.N.; Razak H.R.A.; Saad F.F.A.
Published: (2024) -
Optimization of CTLA-4 and PD-1 proteins in EMT6 Mouse Mammary Cancer Cells by Western Blot
by: Sham N.F.R.; Hasani N.A.H.; Idorus M.Y.; Karim M.K.A.; Fuad S.B.S.A.; Hasbullah H.H.; Ibahim M.J.
Published: (2023)