COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The loca...

Full description

Bibliographic Details
Published in:Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki
Main Author: Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
Format: Article
Language:English
Published: Udmurt State University 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81
Description
Summary:An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. © 2024 Udmurt State University. All rights reserved.
ISSN:19949197
DOI:10.35634/vm240305