COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The loca...

Full description

Bibliographic Details
Published in:Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki
Main Author: Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
Format: Article
Language:English
Published: Udmurt State University 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81
id 2-s2.0-85207309540
spelling 2-s2.0-85207309540
Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
2024
Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki
34
3
10.35634/vm240305
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. © 2024 Udmurt State University. All rights reserved.
Udmurt State University
19949197
English
Article
All Open Access; Gold Open Access
author Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
spellingShingle Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
author_facet Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
author_sort Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K.
title COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
title_short COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
title_full COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
title_fullStr COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
title_full_unstemmed COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
title_sort COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
publishDate 2024
container_title Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki
container_volume 34
container_issue 3
doi_str_mv 10.35634/vm240305
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81
description An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. © 2024 Udmurt State University. All rights reserved.
publisher Udmurt State University
issn 19949197
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1814778501035720704