COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2]
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The loca...
Published in: | Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Udmurt State University
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81 |
id |
2-s2.0-85207309540 |
---|---|
spelling |
2-s2.0-85207309540 Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K. COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] 2024 Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki 34 3 10.35634/vm240305 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81 An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. © 2024 Udmurt State University. All rights reserved. Udmurt State University 19949197 English Article All Open Access; Gold Open Access |
author |
Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K. |
spellingShingle |
Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K. COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
author_facet |
Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K. |
author_sort |
Lau G.-C.; Shiu W.C.; Nalliah M.; Zhang R.; Premalatha K. |
title |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
title_short |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
title_full |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
title_fullStr |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
title_full_unstemmed |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
title_sort |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2; [Полная характеризация мостовых графов с локальным антимагическим хроматическим числом 2] |
publishDate |
2024 |
container_title |
Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki |
container_volume |
34 |
container_issue |
3 |
doi_str_mv |
10.35634/vm240305 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207309540&doi=10.35634%2fvm240305&partnerID=40&md5=78eec11cd4534284f918eb769d816b81 |
description |
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f: E → {1, . . ., |E|} such that for any pair of adjacent vertices x and y, f +(x) 6= f +(y), where the induced vertex label f +(x) = P f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. © 2024 Udmurt State University. All rights reserved. |
publisher |
Udmurt State University |
issn |
19949197 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1814778501035720704 |