Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solu...
الحاوية / القاعدة: | Journal of King Saud University - Computer and Information Sciences |
---|---|
المؤلف الرئيسي: | Wang Y.; Rosli M.M.; Musa N.; Wang L. |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
King Saud bin Abdulaziz University
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212189270&doi=10.1016%2fj.jksuci.2024.102253&partnerID=40&md5=1ce58b30e34c016e1273671a86217847 |
مواد مشابهة
-
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
بواسطة: Wang, وآخرون
منشور في: (2024) -
CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
بواسطة: Gao X.; Jamil N.; Ramli M.I.
منشور في: (2024) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
بواسطة: Azmi, وآخرون
منشور في: (2025) -
A Comparative Analysis of Combination of CNN-Based Models with Ensemble Learning on Imbalanced Data
بواسطة: Gao X.; Jamil N.; Ramli M.I.; Ariffin S.M.Z.S.Z.
منشور في: (2024) -
Consensus clustering and fuzzy classification for breast cancer prognosis
بواسطة: Garibaldi J.M.; Soria D.; Rasmani K.A.
منشور في: (2010)