Identification of working memory status in children from EEG signal features using discrete wavelet transform
The conventional method for assessing the working memory performance of children is time-consuming and potentially inaccurate, especially when dealing with many samples. Therefore, an automated system that can produce swift and accurate results is required. Electroencephalograms (EEG) can be used to...
類似資料
-
Working Memory Performance Classification in Children Using Electroencephalogram (EEG) and VGGNet
著者:: Abidin, 等
出版事項: (2024) -
Precipitation estimation using support vector machine with discrete wavelet transform
著者:: Shenify M.; Danesh A.S.; Gocić M.; Taher R.S.; Wahab A.W.A.; Gani A.; Shamshirband S.; Petković D.
出版事項: (2015) -
Hybrid of the lee-carter model with maximum overlap discrete wavelet transform filters in forecasting mortality rates
著者:: Yaacob N.A.; Jaber J.J.; Pathmanathan D.; Alwadi S.; Mohamed I.
出版事項: (2021) -
A novel microgrid fault detection and classification method using maximal overlap discrete wavelet packet transform and an augmented Lagrangian particle swarm optimization-support vector machine
著者:: Ahmadipour M.; Othman M.M.; Bo R.; Salam Z.; Ridha H.M.; Hasan K.
出版事項: (2022) -
EEG Signal Processing Using Deep Learning for Motor Imagery Tasks: Leveraging Signal Images
著者:: Amran H.N.; Markom M.A.; Awang S.A.; Adom A.H.; Tan E.S.M.M.; Markom A.M.
出版事項: (2025)