Machine Learning Models for Predicting Flood Events Using Weather Data: An Evaluation of Logistic Regression, LightGBM, and XGBoost
This study examines flood prediction in Jakarta, Indonesia, a pressing concern due to its significant implications for public safety and urban management. Machine Learning (ML) presents promising methodologies for accurately forecasting floods by leveraging weather data. However, flood prediction in...
الحاوية / القاعدة: | Journal of Applied Data Sciences |
---|---|
المؤلف الرئيسي: | Maharina; Paryono T.; Fauzi A.; Indra J.; Sihabudin; Harahap M.K.; Rizki L.T. |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Bright Publisher
2025
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216728861&doi=10.47738%2fjads.v6i1.503&partnerID=40&md5=9e496ad42db5aec61fb9d0a9595be0a9 |
مواد مشابهة
-
Multinomial Logistic Regression for The Analysis of Career Decision Style in Teacher Education
بواسطة: Widiyanto; Nurkhin A.; Yulianto A.; Daud N.M.
منشور في: (2023) -
Water Quality Classification Using SVM And XGBoost Method
بواسطة: 2-s2.0-85137143735
منشور في: (2022) -
Unveiling the Influence of natural weathering on the nanomechanical properties of magnetorheological elastomers
بواسطة: Johari, وآخرون
منشور في: (2024) -
Unveiling the Influence of natural weathering on the nanomechanical properties of magnetorheological elastomers
بواسطة: 2-s2.0-85211186371
منشور في: (2024) -
Predicting Ocean Current Temperature Off the East Coast of America with XGBoost and Random Forest Algorithms Using Rstudio
بواسطة: 2-s2.0-85198048471
منشور في: (2024)