Image Classification of Graphene Oxide Thin Films’ Sheet Resistance using a Convolution Neural Network
This study focuses on developing a CNN model, VGG-16, to classify microscopy images of graphene oxide thin films produced by two machines; Atomizer 2 and Atomizer 3 based on the sheet resistance values. The methodology begins with preparing microscopic images of graphene oxide thin films dataset. Th...
類似資料
-
Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network
著者:: 2-s2.0-85130573222
出版事項: (2022) -
Convolutional Neural Network featuring VGG-16 Model for Glioma Classification
著者:: 2-s2.0-85139452252
出版事項: (2022) -
Convolutional Neural Network Based Deep Learning Model for Accurate Classification of Durian Types
著者:: Diana D.; Kurniawan T.B.; Dewi D.A.; Alqudah M.K.; Alqudah M.K.; Zakari M.Z.; Fuad E.F.B.E.
出版事項: (2025) -
Classification Type of Asynchrony Breathing Image Using 2-Dimensional Convolutional Neural Network
著者:: 2-s2.0-85177443458
出版事項: (2023) -
Crack detection and classification in asphalt pavement images using deep convolution neural network
著者:: 2-s2.0-85065018963
出版事項: (2019)