A Hybrid FEM-CNN for Image-Based Severity Prediction of Corroded Offshore Pipelines
The combination of the Finite Element Method (FEM) with Convolutional Neural Networks (CNNs) presents a key breakthrough in the assessment of the structural integrity of offshore pipelines. The advantage of the standard FEM is in stress visualization, but it is time-consuming due to high computation...
出版年: | E3S Web of Conferences |
---|---|
第一著者: | Fadzil N.M.; Muda M.F.; Shahid M.D.A.; Aziz N.; Mohd M.H.; Mohd Amin N.; Mohd Hashim M.H. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
EDP Sciences
2025
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217660862&doi=10.1051%2fe3sconf%2f202561204003&partnerID=40&md5=ab96cc7e26088d54d3a4a08e57ae68a4 |
類似資料
-
Digital healthcare engineering for aging offshore pipelines: a state-of-the-art review
著者:: Mohammad Fadzil N.; Muda M.F.; Abdul Shahid M.D.; Mustafa W.A.; Hairil Mohd M.; Paik J.K.; Mohd Hashim M.H.
出版事項: (2024) -
Fatigue life investigation of non-load carrying fillet weld of structural offshore steel S460G2+M using experiment and FEM simulation
著者:: 2-s2.0-85087487218
出版事項: (2020) -
SCOV-CNN: A Simple CNN Architecture for COVID-19 Identification Based on the CT Images
著者:: Haryanto T.; Suhartanto H.; Murni A.; Kusmardi; Yusoff M.; Zain J.M.
出版事項: (2024) -
Bottom of Line Corrosion Mechanism in Marginal Sour Environment Wet Gas Pipelines
著者:: Azhar L.Y.; Hasnan M.H.; Jarni H.H.; Othman N.K.; Yaakob N.
出版事項: (2024) -
A Framework for Sociodemographic Analysis and Disease Severity among Children during COVID-19
著者:: Abu Abu Bakar, 等
出版事項: (2024)