Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks
This study aims to develop an efficient and accurate breast cancer classification model using meta-learning approaches and multiple convolutional neural networks. This Breast Ultrasound Images (BUSI) dataset contains various types of breast lesions. The goal is to classify these lesions as benign or...
出版年: | Diagnostics |
---|---|
第一著者: | 2-s2.0-85164711241 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Multidisciplinary Digital Publishing Institute (MDPI)
2023
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164711241&doi=10.3390%2fdiagnostics13132242&partnerID=40&md5=0966e06b9cf7e380adfd999fb53afa6a |
類似資料
-
Breast Cancer Classification Using Deep Learning
著者:: 2-s2.0-85167737571
出版事項: (2023) -
Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network
著者:: 2-s2.0-85130573222
出版事項: (2022) -
Convolutional Neural Network Based Deep Learning Model for Accurate Classification of Durian Types
著者:: Diana D.; Kurniawan T.B.; Dewi D.A.; Alqudah M.K.; Alqudah M.K.; Zakari M.Z.; Fuad E.F.B.E.
出版事項: (2025) -
Convolutional Neural Network featuring VGG-16 Model for Glioma Classification
著者:: 2-s2.0-85139452252
出版事項: (2022) -
Classification Type of Asynchrony Breathing Image Using 2-Dimensional Convolutional Neural Network
著者:: 2-s2.0-85177443458
出版事項: (2023)