Feature Selection Methods Using RBFNN Based on Enhance Air Quality Prediction: Insights from Shah Alam
This study examines the predictive efficiency of several feature selection approaches in air quality models aimed to predict next-day PM2.5 concentrations in Shah Alam, Malaysia. Air pollution in urban areas is a significant public health concern, and accurate prediction models are essential for tim...
الحاوية / القاعدة: | International Journal of Advanced Computer Science and Applications |
---|---|
المؤلف الرئيسي: | 2-s2.0-86000672793 |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Science and Information Organization
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-86000672793&doi=10.14569%2fIJACSA.2024.0151148&partnerID=40&md5=ac387223414c643c39b33d00b142c970 |
مواد مشابهة
-
Multibeam RF antenna solution for capacity enhancement in stadium Shah Alam
بواسطة: 2-s2.0-85063449538
منشور في: (2018) -
Improving Air Pollution Prediction Modelling Using Wrapper Feature Selection
بواسطة: 2-s2.0-85138699784
منشور في: (2022) -
Water Quality Improvement using Aloe Vera and Coconut Husk as Natural Coagulant for Shah Alam Lakes Malaysia
بواسطة: Sani S.N.H.; Kasmuri N.; Zaini N.; Nazri N.A.A.; Selim H.; Miskon M.F.
منشور في: (2024) -
URBAN GOVERNANCE APPROACHES FOR LOW CARBON CITIES. THE CASE OF SHAH ALAM LOCAL GOVERNMENT, MALAYSIA
بواسطة: 2-s2.0-85147564652
منشور في: (2022) -
Sustainable Surface Water Dissolved Oxygen Monitoring at Lake 7/1F, Shah Alam, Selangor
بواسطة: Thamrin N.M.; Ali M.S.A.M.; Misnan M.F.; Ibrahim N.N.N.; Shaghaghi N.
منشور في: (2021)