PR-FCNN: a data-driven hybrid approach for predicting PM2.5 concentration
The atmosphere’s fine articulate Matter (PM2.5) poses various health-related risks. Even though multiple efforts have been made to lower the emissions of these substances, the mortality rate is continuously increasing, requiring immediate inclination of the scientific community towards the design an...
出版年: | Discover Artificial Intelligence |
---|---|
第一著者: | 2-s2.0-85208652136 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer Nature
2024
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208652136&doi=10.1007%2fs44163-024-00184-7&partnerID=40&md5=0c2e4841fc8921c1ef151e3ff25c5b6c |
類似資料
-
Physiochemical characterization of ambient PM10 and PM 2.5 in an urban environment
著者:: Kumar, 等
出版事項: (2025) -
Physiochemical characterization of ambient PM10 and PM2.5 in an urban environment
著者:: 2-s2.0-85212569386
出版事項: (2025) -
PM2.5 and ozone in office environments and their potential impact on human health
著者:: 2-s2.0-85081018191
出版事項: (2020) -
Data-driven hybrid approaches for renewable power prediction toward grid decarbonization: Applications, issues and suggestions
著者:: 2-s2.0-85119970556
出版事項: (2021) -
Performance of Bayesian Model Averaging (BMA) for Short-Term Prediction of PM10 Concentration in the Peninsular Malaysia
著者:: Ramli N.; Abdul Hamid H.; Yahaya A.S.; Ul-Saufie A.Z.; Mohamed Noor N.; Abu Seman N.A.; Kamarudzaman A.N.; Deák G.
出版事項: (2023)