Affirmative Solutions on Local Antimagic Chromatic Number
An edge labeling of a connected graph G= (V, E) is said to be local antimagic if it is a bijection f: E→ { 1 , … , | E| } such that for any pair of adjacent vertices x and y, f+(x) ≠ f+(y) , where the induced vertex label f+(x) = ∑ f(e) , with e ranging over all the edges incident to x. The local an...
出版年: | Graphs and Combinatorics |
---|---|
第一著者: | 2-s2.0-85086567268 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer
2020
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086567268&doi=10.1007%2fs00373-020-02197-2&partnerID=40&md5=5af16c465252b801bb69976d8256f94d |
類似資料
-
On Bridge Graphs with Local Antimagic Chromatic Number 3
著者:: Shiu, 等
出版事項: (2025) -
On Bridge Graphs with Local Antimagic Chromatic Number 3
著者:: Shiu W.-C.; Lau G.-C.; Zhang R.
出版事項: (2025) -
On Local Antimagic Chromatic Number of Cycle-Related Join Graphs
著者:: 2-s2.0-85099496674
出版事項: (2021) -
ON LOCAL ANTIMAGIC TOTAL LABELING OF COMPLETE GRAPHS AMALGAMATION
著者:: 2-s2.0-85164321688
出版事項: (2023) -
EVERY GRAPH IS LOCAL ANTIMAGIC TOTAL AND ITS APPLICATIONS
著者:: 2-s2.0-85170201438
出版事項: (2023)