Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment
In this study, U-shaped fiber optic sensors are fabricated and analyzed to measure the sensitivity of the developed sensor and optimized the detection of the refractive index (RI) of a given liquid. Identifying the authenticity of the RI is very important in food processing, chemical, liquid securit...
Published in: | SPIE FUTURE SENSING TECHNOLOGIES 2023 |
---|---|
Main Authors: | , , , , , |
Format: | Proceedings Paper |
Language: | English |
Published: |
SPIE-INT SOC OPTICAL ENGINEERING
2023
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001139690800047 |
author |
Supian L. S.; Sahroni Noor Hamisah Mohd; Ping Chew Sue; Naim Nani Fadzlina; Ramza Harry |
---|---|
spellingShingle |
Supian L. S.; Sahroni Noor Hamisah Mohd; Ping Chew Sue; Naim Nani Fadzlina; Ramza Harry Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment Remote Sensing |
author_facet |
Supian L. S.; Sahroni Noor Hamisah Mohd; Ping Chew Sue; Naim Nani Fadzlina; Ramza Harry |
author_sort |
Supian |
spelling |
Supian, L. S.; Sahroni, Noor Hamisah Mohd; Ping, Chew Sue; Naim, Nani Fadzlina; Ramza, Harry Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment SPIE FUTURE SENSING TECHNOLOGIES 2023 English Proceedings Paper In this study, U-shaped fiber optic sensors are fabricated and analyzed to measure the sensitivity of the developed sensor and optimized the detection of the refractive index (RI) of a given liquid. Identifying the authenticity of the RI is very important in food processing, chemical, liquid security and pharmacy. In this research, three types of sensors with different curvature radii (3 mm, 4 mm, and 5 mm) and different angles (30 degrees C and 60 degrees C) with 60 cm length of polymer fibers have been developed to characterize and analyze which type of sensor that will give optimal reading. This sensor is expected to be used for future studies such as in bioengineering, food and liquid security and chemical detection. Each sensor is tested with several types of liquids that have different densities. The development of this RI sensor is also intended to detect a suitable temperature for RI of a liquid that is between 20 degrees C - 55 degrees C. The research analyzed the RI sensitivity using impurity-free liquid (mineral water) and non-impurity liquid (saline water and used cooking oil). The result is measured and collected using Optical Power Meter and a 6500-input light source. The selection of this U-shaped sensor is due to the robustness of this sensor in various environments, high sensitivity, and its simple construction. This work aims to produce a low-cost and highly optimal U-shaped sensor for detecting and measuring the RI of a liquid impurity and security in any environment. SPIE-INT SOC OPTICAL ENGINEERING 0277-786X 1996-756X 2023 12327 10.1117/12.2666890 Remote Sensing WOS:001139690800047 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001139690800047 |
title |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
title_short |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
title_full |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
title_fullStr |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
title_full_unstemmed |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
title_sort |
Investigation of U-shaped plastic optical fiber as refractive index sensor for liquids assessment |
container_title |
SPIE FUTURE SENSING TECHNOLOGIES 2023 |
language |
English |
format |
Proceedings Paper |
description |
In this study, U-shaped fiber optic sensors are fabricated and analyzed to measure the sensitivity of the developed sensor and optimized the detection of the refractive index (RI) of a given liquid. Identifying the authenticity of the RI is very important in food processing, chemical, liquid security and pharmacy. In this research, three types of sensors with different curvature radii (3 mm, 4 mm, and 5 mm) and different angles (30 degrees C and 60 degrees C) with 60 cm length of polymer fibers have been developed to characterize and analyze which type of sensor that will give optimal reading. This sensor is expected to be used for future studies such as in bioengineering, food and liquid security and chemical detection. Each sensor is tested with several types of liquids that have different densities. The development of this RI sensor is also intended to detect a suitable temperature for RI of a liquid that is between 20 degrees C - 55 degrees C. The research analyzed the RI sensitivity using impurity-free liquid (mineral water) and non-impurity liquid (saline water and used cooking oil). The result is measured and collected using Optical Power Meter and a 6500-input light source. The selection of this U-shaped sensor is due to the robustness of this sensor in various environments, high sensitivity, and its simple construction. This work aims to produce a low-cost and highly optimal U-shaped sensor for detecting and measuring the RI of a liquid impurity and security in any environment. |
publisher |
SPIE-INT SOC OPTICAL ENGINEERING |
issn |
0277-786X 1996-756X |
publishDate |
2023 |
container_volume |
12327 |
container_issue |
|
doi_str_mv |
10.1117/12.2666890 |
topic |
Remote Sensing |
topic_facet |
Remote Sensing |
accesstype |
|
id |
WOS:001139690800047 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001139690800047 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1809678633072066560 |