Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer
In this paper, a hybridization method based on Arithmetic optimization algorithm (AOA) and Aquila optimizer (AO) solver namely, the AO-AOA is applied to solve the Optimal Power Flow (OPF) problem to independently optimize generation fuel cost, power loss, emission, voltage deviation, and L index. Th...
Published in: | EXPERT SYSTEMS WITH APPLICATIONS |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Published: |
PERGAMON-ELSEVIER SCIENCE LTD
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001185590700001 |
Summary: | In this paper, a hybridization method based on Arithmetic optimization algorithm (AOA) and Aquila optimizer (AO) solver namely, the AO-AOA is applied to solve the Optimal Power Flow (OPF) problem to independently optimize generation fuel cost, power loss, emission, voltage deviation, and L index. The proposed AO-AOA algorithm follows two strategies to find a better optimal solution. The first strategy is to introduce an energy parameter (E) to balance the transition between the individuals' procedure of exploration and exploitation in AOAOA swarms. Next, a piecewise linear map is employed to reduce the energy parameter's (E) randomness. To evaluate the performance of the proposed AO-AOA algorithm, it is tested on two well-known power systems i.e., IEEE 30-bus test network, and IEEE 118-bus test system. Moreover, to validate the effectiveness of the proposed (AO-AOA), it is compared with a famous optimization technique as a competitor i.e., Teaching-learning-based optimization (TLBO), and recently published works on solving OPF problems. Furthermore, a robustness analysis was executed to determine the reliability of the AO-AOA solver. The obtained result confirms that not only the AO-AOA is efficient in optimization with significant convergence speed, but also denotes the dominance and potential of the AO-AOA in comparison with other works. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2023.121212 |