Driver Drowsiness Detection Using Vision Transformer
This work explores the capability of the new neural network architecture called Vision Transformer (ViT) in addressing prevalent issue of road accidents attributed to drowsy driving. The development of the ViT model involves the use of a pre-trained ViT_B_16 model with initial weight from IMAGENET1K...
الحاوية / القاعدة: | 2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024 |
---|---|
المؤلفون الرئيسيون: | Azmi, Muhammad Muizuddin Bin Mohamad; Zaman, Fadhlan Hafizhelmi Kamaru |
التنسيق: | Proceedings Paper |
اللغة: | English |
منشور في: |
IEEE
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283898700030 |
مواد مشابهة
-
Comparison of the pediatric vision screening program in 18 countries across five continents
بواسطة: 2-s2.0-85071644688
منشور في: (2019) -
Enhancing Aviation Safety: A Deep Learning-Based Fault Detection System for Jet Engines
بواسطة: Suliman, وآخرون
منشور في: (2024) -
Investigation Towards the Needs of Affective Design Principles of Mathematics Mobile Application for Low Vision Learners
بواسطة: 2-s2.0-85123437883
منشور في: (2021) -
Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
بواسطة: Suxia, وآخرون
منشور في: (2025) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
بواسطة: Azmi, وآخرون
منشور في: (2025)