Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features

This study evaluates and differentiates five advanced machine learning models-LSTM, GRU, CNN-LSTM, Random Forest, and SVR-aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R2 score o...

詳細記述

書誌詳細
出版年:DISCOVER SUSTAINABILITY
主要な著者: Khan, Sunawar; Mazhar, Tehseen; Khan, Muhammad Amir; Shahzad, Tariq; Ahmad, Wasim; Bibi, Afsha; Saeed, Mamoon M.; Hamam, Habib
フォーマット: 論文
言語:English
出版事項: SPRINGERNATURE 2024
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001386434000001