Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features
This study evaluates and differentiates five advanced machine learning models-LSTM, GRU, CNN-LSTM, Random Forest, and SVR-aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R2 score o...
出版年: | DISCOVER SUSTAINABILITY |
---|---|
主要な著者: | , , , , , , , , |
フォーマット: | 論文 |
言語: | English |
出版事項: |
SPRINGERNATURE
2024
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001386434000001 |