Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning

This study addresses the challenge of imbalanced dissolved gas analysis (DGA) data in transformer failure classification by assessing the impact of data-level balancing techniques on machine learning performance. Five data-level strategies - Random Under-Sampling (RUS), Edited Nearest Neighbors (ENN...

詳細記述

書誌詳細
出版年:ENERGY REPORTS
主要な著者: Azmi, Putri Azmira R.; Yusoff, Marina; Sallehud-din, Mohamad Taufik Mohd
フォーマット: 論文
言語:English
出版事項: ELSEVIER 2025
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001386454100001