Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
This study explored the emotional drivers of slow fashion consumption through big data analysis. Python was used to capture more than 10,000 slow fashion clothing review data from e-commerce platforms, and advanced data analysis (LDA, TF-IDF, semantic network) was used to reveal the emotional driver...
الحاوية / القاعدة: | ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL |
---|---|
المؤلفون الرئيسيون: | Suxia, Yu; Tajuddin, Rosita Mohd; Shariff, Shaliza Mohd; Tao, Meng |
التنسيق: | Proceedings Paper |
اللغة: | English |
منشور في: |
E-IPH LTD UK
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001428648800001 |
مواد مشابهة
-
Big Data and Business Intelligence - A Data Driven Strategy for Business in Bosnia Herzegovina
بواسطة: 2-s2.0-85146682275
منشور في: (2022) -
Bibliometric-based visual analysis of sustainable consumption (2004-2024)
بواسطة: Ou W.; Shariff S.M.; Tajuddin R.B.M.
منشور في: (2024) -
Slow learner children profiling for designing personalized eBook
بواسطة: Mansor M.; Wan Adnan W.A.; Abdullah N.
منشور في: (2014) -
The state of the art and taxonomy of big data analytics: view from new big data framework
بواسطة: 2-s2.0-85060981723
منشور في: (2020) -
Application and challenges of big data analytics in low-carbon indoor space design
بواسطة: Zeng, وآخرون
منشور في: (2025)