Detecting Chinese Sexism Text in Social Media Using Hybrid Deep Learning Model with Sarcasm Masking
Sexism content is prevalent in social media, which seriously affects the online environment and occasionally leads to offline disputes. For this reason, many scholars have researched how to automatically detect sexist content in social media. However, the presence of sarcasm complicates this task. T...
发表在: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
Main Authors: | Wang, Lei; Abdullah, Nur Atiqah Sia; Aris, Syaripah Ruzaini Syed |
格式: | 文件 |
语言: | English |
出版: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
主题: | |
在线阅读: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441789600001 |
相似书籍
-
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
由: Zhang J.; Maskat R.
出版: (2024) -
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
由: 2-s2.0-85216922302
出版: (2024) -
A Study of Comfort Properties Between Various Brand of Face Masks for Malaysian Consumers
由: Zainuddin N.; Tulos N.; Osman S.; Zakaria M.H.; Aris A.
出版: (2024) -
Social Media Usage and Interactions: An In-Depth Interview on BERSIH 2.0 Social Media Visual Framing
由: Fathir M.F.M.; Lokman A.M.; Kadir S.A.; Sualman I.
出版: (2023) -
Feasibility of text visualization in text steganalysis
由: Ab. Rauf R.H.; Jamal N.
出版: (2014)