Hydrothermal fabrication of composite chitosan grafted salicylaldehyde/coal fly ash/algae for malachite green dye removal: A statistical optimization

In this study, chitosan grafted salicylaldehyde/coal fly ash/algae (Chi-SL/CFA/Alg) was synthesized by assistance of hydrothermal process to be an effective adsorbent to remove cationic dye (malachite green: MG) from water. The physicochemical properties of the Chi-SL/CFA/Alg biomaterial were examin...

全面介紹

書目詳細資料
發表在:International Journal of Biological Macromolecules
主要作者: 2-s2.0-85204799320
格式: Article
語言:English
出版: Elsevier B.V. 2024
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204799320&doi=10.1016%2fj.ijbiomac.2024.135897&partnerID=40&md5=430d2053d6c52ecba21f172ad9463ef7
實物特徵
總結:In this study, chitosan grafted salicylaldehyde/coal fly ash/algae (Chi-SL/CFA/Alg) was synthesized by assistance of hydrothermal process to be an effective adsorbent to remove cationic dye (malachite green: MG) from water. The physicochemical properties of the Chi-SL/CFA/Alg biomaterial were examined using SEM-EDX, pHpzc, specific surface area (BET), and FTIR analyses. The optimization process of the adsorption operation parameters for MG removal by Chi-SL/CFA/Alg were optimized using a Box-Behnken design (BBD). The selected adsorption operation parameters Chi-SL/CFA/Alg dosage (A: 0.02–0.1 g/100 mL), solution pH (B: 4–8), and contact time (C: 20–360 min). Analysis of variance (ANOVA) test was applied to determine the significant interaction between the adsorption operation parameters and to validate BBD output. The adsorption kinetics and isotherms of MG dye by Chi-SL/CFA/Alg were well described by pseudo-second order (PSO) kinetic and Freundlich isotherm model respectively. Thus, the maximum adsorption capacity (qmax) of MG dye by Chi-SL/CFA/Alg was found to be 493.7 mg/g at basic pH environment (pH = 8) and working temperature 25 °C. The adsorption mechanism can be ascribed to various interactions, including hydrogen bonding, π-π interactions, electrostatic attraction, and n-π interactions. Thus, Chi-SL/CFA/Alg can be considered as preferable and potential adsorbent for removing cationic dye from aqueous environment. © 2024 Elsevier B.V.
ISSN:1418130
DOI:10.1016/j.ijbiomac.2024.135897