Crack detection and classification in asphalt pavement images using deep convolution neural network
Pavement distress particularly cracks, are the most significant type of pavement distress that has been studied for many years due to the complicated pavement crack condition. The continuous severity of crack can cause a dangerous environment that may affect the road users. Therefore, an efficient c...
الحاوية / القاعدة: | Proceedings - 8th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2018 |
---|---|
المؤلف الرئيسي: | 2-s2.0-85065018963 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Institute of Electrical and Electronics Engineers Inc.
2019
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065018963&doi=10.1109%2fICCSCE.2018.8685007&partnerID=40&md5=3ee52440bf031a9ff0b5611a296ff2ba |
مواد مشابهة
-
Deep convolution neural network for crack detection on asphalt pavement
بواسطة: 2-s2.0-85077790231
منشور في: (2019) -
Cracklabel: A thresholding-based crack labeling tool for asphalt pavement images
بواسطة: 2-s2.0-85115290644
منشور في: (2021) -
Image Segmentation for Pavement Crack Detection System
بواسطة: 2-s2.0-85093851482
منشور في: (2020) -
Efficient Pavement Crack Detection and Classification Using Custom YOLOv7 Model
بواسطة: 2-s2.0-85151442702
منشور في: (2023) -
Mass Detection in Digital Mammogram Image using Convolutional Neural Network (CNN)
بواسطة: 2-s2.0-85116191968
منشور في: (2021)