Water Quality Classification Using SVM And XGBoost Method
Various pollutants have been endangering water quality over the past decades. As a result, predicting and modeling water quality have become essential to minimizing water pollution. This research has developed a classification algorithm to predict the water quality classification (WQC). The WQC is c...
الحاوية / القاعدة: | 2022 IEEE 13th Control and System Graduate Research Colloquium, ICSGRC 2022 - Conference Proceedings |
---|---|
المؤلف الرئيسي: | 2-s2.0-85137143735 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Institute of Electrical and Electronics Engineers Inc.
2022
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137143735&doi=10.1109%2fICSGRC55096.2022.9845143&partnerID=40&md5=c58e052e39c2c218606930b671617786 |
مواد مشابهة
-
Handling imbalanced dataset using SVM and k-NN approach
بواسطة: Wah Y.B.; Rahman H.A.A.; He H.; Bulgiba A.
منشور في: (2016) -
Digital image processing technique for palm oil leaf disease detection using multiclass SVM classifier
بواسطة: 2-s2.0-85050597503
منشور في: (2017) -
Predicting Ocean Current Temperature Off the East Coast of America with XGBoost and Random Forest Algorithms Using Rstudio
بواسطة: 2-s2.0-85198048471
منشور في: (2024) -
Prediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning Techniques
بواسطة: 2-s2.0-85127850257
منشور في: (2022) -
Machine Learning Models for Predicting Flood Events Using Weather Data: An Evaluation of Logistic Regression, LightGBM, and XGBoost
بواسطة: Maharina; Paryono T.; Fauzi A.; Indra J.; Sihabudin; Harahap M.K.; Rizki L.T.
منشور في: (2025)