Anomalous behaviour detection based on heterogeneous data and data fusion
In this paper, we propose a new approach to identify anomalous behaviour based on heterogeneous data and a data fusion technique. There are four types of datasets applied in this study including credit card, loyalty card, GPS, and image data. The first step of the complete framework in this proposed...
发表在: | Soft Computing |
---|---|
主要作者: | Ali A.M.; Angelov P. |
格式: | 文件 |
语言: | English |
出版: |
Springer Verlag
2018
|
在线阅读: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040059834&doi=10.1007%2fs00500-017-2989-5&partnerID=40&md5=e3c98ef17ab2e1211bda7bbaa2912bb8 |
相似书籍
-
Multi-Modal Fusion for Multi-Task Fuzzy Detection of Rail Anomalies
由: Liyuan Y.; Osman G.; Abdul Rahman S.; Mustapha M.F.
出版: (2024) -
Integrating and retrieving learning analytics data from heterogeneous platforms using ontology alignment: Graph-based approach
由: Musa, et al.
出版: (2025) -
Performance Analysis of Heterogeneous Data Transmission in 5G C-V2N Communication
由: 2-s2.0-85146734702
出版: (2022) -
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model
由: 2-s2.0-85199751285
出版: (2025) -
Developing an Integrative Data Intelligence Model for Construction Cost Estimation
由: Ali Z.H.; Burhan A.M.; Kassim M.; Al-Khafaji Z.
出版: (2022)