Hate crime on twitter: Aspect-based sentiment analysis approach
Online media are well-known to be suitable for conveying hate speech. Hateful wording as such involves communications that unlawfully demean any group or person based on certain characteristics, including colour, race, gender, ethnicity, sexual orientation, religion, or nationality. The continuing r...
الحاوية / القاعدة: | Frontiers in Artificial Intelligence and Applications |
---|---|
المؤلف الرئيسي: | Zainuddin N.; Selamat A.; Ibrahim R. |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
IOS Press BV
2019
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082079328&doi=10.3233%2fFAIA190056&partnerID=40&md5=17e1e37d301d4f27b856ed498cb0bc26 |
مواد مشابهة
-
Evaluating aspect-based sentiment classification on Twitter hate speech using neural networks and word embedding features
بواسطة: Zainuddin N.; Selamat A.; Ibrahim R.
منشور في: (2018) -
The Best Malaysian Airline Companies Visualization through Bilingual Twitter Sentiment Analysis: A Machine Learning Classification
بواسطة: 2-s2.0-85128946535
منشور في: (2022) -
Factors Affecting Crime Rate in Malaysia Using Autoregressive Distributed Lag Modeling Approach
بواسطة: Zulkiflee N.F.Z.; Borhan N.; Hadrawi M.F.
منشور في: (2022) -
Predicting Mental Health Disorder on Twitter Using Machine Learning Techniques
بواسطة: 2-s2.0-85175457067
منشور في: (2023) -
Sentiment Analysis on Umrah Packages Review in Malaysia
بواسطة: Dewi, وآخرون
منشور في: (2024)