Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features

This study evaluates and differentiates five advanced machine learning models—LSTM, GRU, CNN-LSTM, Random Forest, and SVR—aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R2 score o...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Discover Sustainability
المؤلف الرئيسي: Khan S.; Mazhar T.; Khan M.A.; Shahzad T.; Ahmad W.; Bibi A.; Saeed M.M.; Hamam H.
التنسيق: مقال
اللغة:English
منشور في: Springer Nature 2024
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213685937&doi=10.1007%2fs43621-024-00783-5&partnerID=40&md5=f45c8c868b50c1efa158f9dcdfef51ae