Convolutional Neural Network featuring VGG-16 Model for Glioma Classification
Magnetic Resonance Imaging (MRI) is a body sensing technique that can produce detailed images of the condition of organs and tissues. Specifically related to brain tumors, the resulting images can be analyzed using image detection techniques so that tumor stages can be classified automatically. Dete...
出版年: | International Journal on Informatics Visualization |
---|---|
第一著者: | 2-s2.0-85139452252 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Politeknik Negeri Padang
2022
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139452252&doi=10.30630%2fjoiv.6.3.1230&partnerID=40&md5=f5ecb6ebd864dc1aace5719998f390d4 |
類似資料
-
Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network
著者:: 2-s2.0-85130573222
出版事項: (2022) -
Comparative Analysis of Hybrid 1D-CNN-LSTM and VGG16-1D-LSTM for Lung Lesion Classification
著者:: Jafery, 等
出版事項: (2025) -
Convolutional Neural Network Based Deep Learning Model for Accurate Classification of Durian Types
著者:: Diana D.; Kurniawan T.B.; Dewi D.A.; Alqudah M.K.; Alqudah M.K.; Zakari M.Z.; Fuad E.F.B.E.
出版事項: (2025) -
Classification Type of Asynchrony Breathing Image Using 2-Dimensional Convolutional Neural Network
著者:: 2-s2.0-85177443458
出版事項: (2023) -
Crack detection and classification in asphalt pavement images using deep convolution neural network
著者:: 2-s2.0-85065018963
出版事項: (2019)