Driver Drowsiness Detection Using Vision Transformer
This work explores the capability of the new neural network architecture called Vision Transformer (ViT) in addressing prevalent issue of road accidents attributed to drowsy driving. The development of the ViT model involves the use of a pre-trained ViT_B_16 model with initial weight from IMAGENET1K...
發表在: | 2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024 |
---|---|
Main Authors: | Azmi, Muhammad Muizuddin Bin Mohamad; Zaman, Fadhlan Hafizhelmi Kamaru |
格式: | Proceedings Paper |
語言: | English |
出版: |
IEEE
2024
|
主題: | |
在線閱讀: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283898700030 |
相似書籍
-
Comparison of the pediatric vision screening program in 18 countries across five continents
由: 2-s2.0-85071644688
出版: (2019) -
Enhancing Aviation Safety: A Deep Learning-Based Fault Detection System for Jet Engines
由: Suliman, et al.
出版: (2024) -
Investigation Towards the Needs of Affective Design Principles of Mathematics Mobile Application for Low Vision Learners
由: 2-s2.0-85123437883
出版: (2021) -
Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
由: Suxia, et al.
出版: (2025) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
由: Azmi, et al.
出版: (2025)