Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut
Tannins are toxic polyphenols present in various plants, contributing to microbial attacks and plant protection due to their astringence and bitter taste. However, high tannin inclusion in poultry diets will result in dyspepsia, hampering nutrient absorption and digestion. Interestingly, several bac...
Published in: | MALAYSIAN APPLIED BIOLOGY |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Published: |
MALAYSIAN SOC APPLIED BIOLOGY
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001330307600003 |
author |
Suhaimi Muhammad Syafiq; Zailani Fayyadhah Asyiqin; Zaki Nur Farah Syuhada Mohd; Aris Farizan; Jalil Mohd Taufiq Mat; Zakaria Nurul Aili |
---|---|
spellingShingle |
Suhaimi Muhammad Syafiq; Zailani Fayyadhah Asyiqin; Zaki Nur Farah Syuhada Mohd; Aris Farizan; Jalil Mohd Taufiq Mat; Zakaria Nurul Aili Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut Life Sciences & Biomedicine - Other Topics; Biotechnology & Applied Microbiology |
author_facet |
Suhaimi Muhammad Syafiq; Zailani Fayyadhah Asyiqin; Zaki Nur Farah Syuhada Mohd; Aris Farizan; Jalil Mohd Taufiq Mat; Zakaria Nurul Aili |
author_sort |
Suhaimi |
spelling |
Suhaimi, Muhammad Syafiq; Zailani, Fayyadhah Asyiqin; Zaki, Nur Farah Syuhada Mohd; Aris, Farizan; Jalil, Mohd Taufiq Mat; Zakaria, Nurul Aili Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut MALAYSIAN APPLIED BIOLOGY English Article Tannins are toxic polyphenols present in various plants, contributing to microbial attacks and plant protection due to their astringence and bitter taste. However, high tannin inclusion in poultry diets will result in dyspepsia, hampering nutrient absorption and digestion. Interestingly, several bacteria occupying the rumen and gastrointestinal tract (GIT) of animals may tolerate tannins and degrade them by wielding tannase enzymes. The study aims to isolate and characterize potential tannin-degrading bacteria (TDB) from several ruminant specimens. The TDBs were isolated based on their tannin hydrolyzing ability on a minimal salt medium (MSM) agar complemented with 0.2% tannic acid as the sole source of carbon and energy. The maximum tannin tolerance of the isolates was characterized using increased tannin concentrations on the MSM agar plates. Furthermore, the tannase activity was also evaluated over a five-day incubation. A total of 42 tannin degraders were isolated, and 10 TDBs were chosen for further characterization based on the hydrolyzed zone produced. Molecular identification revealed the presence of Bacillus cereus (TDB536), Lysinibacillus macroides (TDB17), Acinetobacter nosocomialis (TDB18, 20, 23, 24, 30, 35), and Staphylococcus saprophyticus (TDB40). TDB17, TDB18, and TDB24 showed the highest tannic acid tolerance at 1.0%, while TDB36 and TDB40 exhibited the lowest tolerance at 0.4%. Each TDB displayed varying tannase activities, ranging from 11.56 to 42.08 U/mL over a five-day incubation period. TDB5 and TDB35 demonstrated significantly higher tannase activity on day 2 (p<0.05). Meanwhile, TDB23 and TDB24 showed the highest tannase on day 4 (p<0.05). Among the isolates, A. nosocomialis strain AE6 (TDB24) from feces exhibited the highest tannase activity (42.08 U/mL) and represented the best TDB. The isolated strains demonstrate their capabilities in reducing tannin's antinutritional effects in poultry feed. MALAYSIAN SOC APPLIED BIOLOGY 0126-8643 2462-151X 2024 53 3 10.55230/mabjournal.v53i3.2999 Life Sciences & Biomedicine - Other Topics; Biotechnology & Applied Microbiology hybrid WOS:001330307600003 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001330307600003 |
title |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
title_short |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
title_full |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
title_fullStr |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
title_full_unstemmed |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
title_sort |
Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut |
container_title |
MALAYSIAN APPLIED BIOLOGY |
language |
English |
format |
Article |
description |
Tannins are toxic polyphenols present in various plants, contributing to microbial attacks and plant protection due to their astringence and bitter taste. However, high tannin inclusion in poultry diets will result in dyspepsia, hampering nutrient absorption and digestion. Interestingly, several bacteria occupying the rumen and gastrointestinal tract (GIT) of animals may tolerate tannins and degrade them by wielding tannase enzymes. The study aims to isolate and characterize potential tannin-degrading bacteria (TDB) from several ruminant specimens. The TDBs were isolated based on their tannin hydrolyzing ability on a minimal salt medium (MSM) agar complemented with 0.2% tannic acid as the sole source of carbon and energy. The maximum tannin tolerance of the isolates was characterized using increased tannin concentrations on the MSM agar plates. Furthermore, the tannase activity was also evaluated over a five-day incubation. A total of 42 tannin degraders were isolated, and 10 TDBs were chosen for further characterization based on the hydrolyzed zone produced. Molecular identification revealed the presence of Bacillus cereus (TDB536), Lysinibacillus macroides (TDB17), Acinetobacter nosocomialis (TDB18, 20, 23, 24, 30, 35), and Staphylococcus saprophyticus (TDB40). TDB17, TDB18, and TDB24 showed the highest tannic acid tolerance at 1.0%, while TDB36 and TDB40 exhibited the lowest tolerance at 0.4%. Each TDB displayed varying tannase activities, ranging from 11.56 to 42.08 U/mL over a five-day incubation period. TDB5 and TDB35 demonstrated significantly higher tannase activity on day 2 (p<0.05). Meanwhile, TDB23 and TDB24 showed the highest tannase on day 4 (p<0.05). Among the isolates, A. nosocomialis strain AE6 (TDB24) from feces exhibited the highest tannase activity (42.08 U/mL) and represented the best TDB. The isolated strains demonstrate their capabilities in reducing tannin's antinutritional effects in poultry feed. |
publisher |
MALAYSIAN SOC APPLIED BIOLOGY |
issn |
0126-8643 2462-151X |
publishDate |
2024 |
container_volume |
53 |
container_issue |
3 |
doi_str_mv |
10.55230/mabjournal.v53i3.2999 |
topic |
Life Sciences & Biomedicine - Other Topics; Biotechnology & Applied Microbiology |
topic_facet |
Life Sciences & Biomedicine - Other Topics; Biotechnology & Applied Microbiology |
accesstype |
hybrid |
id |
WOS:001330307600003 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001330307600003 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1814778543984345088 |