Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
This study explored the emotional drivers of slow fashion consumption through big data analysis. Python was used to capture more than 10,000 slow fashion clothing review data from e-commerce platforms, and advanced data analysis (LDA, TF-IDF, semantic network) was used to reveal the emotional driver...
出版年: | ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL |
---|---|
主要な著者: | Suxia, Yu; Tajuddin, Rosita Mohd; Shariff, Shaliza Mohd; Tao, Meng |
フォーマット: | Proceedings Paper |
言語: | English |
出版事項: |
E-IPH LTD UK
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001428648800001 |
類似資料
-
Big Data and Business Intelligence - A Data Driven Strategy for Business in Bosnia Herzegovina
著者:: 2-s2.0-85146682275
出版事項: (2022) -
Bibliometric-based visual analysis of sustainable consumption (2004-2024)
著者:: Ou W.; Shariff S.M.; Tajuddin R.B.M.
出版事項: (2024) -
Slow learner children profiling for designing personalized eBook
著者:: Mansor M.; Wan Adnan W.A.; Abdullah N.
出版事項: (2014) -
The state of the art and taxonomy of big data analytics: view from new big data framework
著者:: 2-s2.0-85060981723
出版事項: (2020) -
Application and challenges of big data analytics in low-carbon indoor space design
著者:: Zeng, 等
出版事項: (2025)