Upper a-Graphical Topological Spaces with the COVID-19 Form and Its Diffusion

In this work, we use the monophonic eccentric open neighborhood system and the upper approximation neighborhood system to construct a new class of topologies in the theory of undirected simple graphs. We study some fundamental topological properties of this class and characterize the graphs that ind...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:AXIOMS
المؤلفون الرئيسيون: Damag, Faten H.; Saif, Amin; Kilicman, Adem; Mesmouli, Mouataz Billah; Alhubairah, Fozaiyah
التنسيق: مقال
اللغة:English
منشور في: MDPI 2025
الموضوعات:
الوصول للمادة أونلاين:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001429675900001
الوصف
الملخص:In this work, we use the monophonic eccentric open neighborhood system and the upper approximation neighborhood system to construct a new class of topologies in the theory of undirected simple graphs. We study some fundamental topological properties of this class and characterize the graphs that induce the indiscrete or discrete topology. Next, we present the openness, the connectedness and the continuity properties with isomorphic maps of graphs. Some applications concerning the topological discrete and connectedness properties for some corresponding graphs of the COVID-19 form and its diffusion are introduced.
تدمد:
2075-1680
DOI:10.3390/axioms14020084