Performance evaluation of high discharge estuarine hydrodynamic model
The complexity of physical processes in an estuary provides challenges to develop a functional and reliable model. There is a lack of systematic method in calibrating and validating the model in reducing the time of processing the model which can take a longer time of analysis. This study presents a...
出版年: | AIN SHAMS ENGINEERING JOURNAL |
---|---|
主要な著者: | , , , , , , |
フォーマット: | 論文 |
言語: | English |
出版事項: |
ELSEVIER
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001439443100001 |
要約: | The complexity of physical processes in an estuary provides challenges to develop a functional and reliable model. There is a lack of systematic method in calibrating and validating the model in reducing the time of processing the model which can take a longer time of analysis. This study presents a systematic calibration and validation approach for the TELEMAC-2D hydrodynamic model of a tropical estuary with high river discharge. Key parameters, including tidal prior current speed, time steps, friction coefficient, iteration, velocity diffusivity, and Courant number, were optimized. Model sensitivity analysis was conducted, and the bottom friction was calibrated using the Nikuradse law. The model achieved strong agreement with observation data (R2 = 0.95, RMSE = 0.17, Ks = 0.32), demonstrating its reliability for simulating tropical estuarine hydrodynamics. This study emphasizes Courant number optimization, enhancing model stability, accuracy, and efficiency for reliable estuarine simulations and informed coastal management. |
---|---|
ISSN: | 2090-4479 2090-4495 |
DOI: | 10.1016/j.asej.2025.103322 |