Improving Air Quality Prediction Models for Banting: A Performance Evaluation of Lasso, mRMR, and ReliefF
This study explores the effectiveness of various feature selection methods in forecasting next-day PM2.5 levels in Banting, Malaysia. The accurate prediction of PM2.5 concentrations is crucial for public health, enabling authorities to take timely actions to mitigate exposure to harmful pollutants....
出版年: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
主要な著者: | , , , |
フォーマット: | 論文 |
言語: | English |
出版事項: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441763100001 |