Improving Air Quality Prediction Models for Banting: A Performance Evaluation of Lasso, mRMR, and ReliefF

This study explores the effectiveness of various feature selection methods in forecasting next-day PM2.5 levels in Banting, Malaysia. The accurate prediction of PM2.5 concentrations is crucial for public health, enabling authorities to take timely actions to mitigate exposure to harmful pollutants....

詳細記述

書誌詳細
出版年:INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
主要な著者: Arafin, Siti Khadijah; Mazumdar, Suvodeep; Ibrahim, Nurain
フォーマット: 論文
言語:English
出版事項: SCIENCE & INFORMATION SAI ORGANIZATION LTD 2025
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441763100001