A Novel Hybrid Model Based on CEEMDAN and Bayesian Optimized LSTM for Financial Trend Prediction

Financial time series prediction is inherently complex due to its nonlinear, nonstationary, and highly volatile nature. This study introduces a novel CEEMDAN-BO-LSTM model within a decomposition-optimization-prediction- integration framework to address these challenges. The Complete Ensemble Empiric...

詳細記述

書誌詳細
出版年:INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS
主要な著者: Sun, Yu; Mutalib, Sofianita; Tian, Liwei
フォーマット: 論文
言語:English
出版事項: SCIENCE & INFORMATION SAI ORGANIZATION LTD 2025
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441772100001