A Novel Hybrid Model Based on CEEMDAN and Bayesian Optimized LSTM for Financial Trend Prediction
Financial time series prediction is inherently complex due to its nonlinear, nonstationary, and highly volatile nature. This study introduces a novel CEEMDAN-BO-LSTM model within a decomposition-optimization-prediction- integration framework to address these challenges. The Complete Ensemble Empiric...
الحاوية / القاعدة: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
المؤلفون الرئيسيون: | Sun, Yu; Mutalib, Sofianita; Tian, Liwei |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441772100001 |
مواد مشابهة
-
Improved Whale Optimization Algorithm with LSTM for Stock Index Prediction
بواسطة: Sun, وآخرون
منشور في: (2025) -
Improved Whale Optimization Algorithm with LSTM for Stock Index Prediction
بواسطة: Sun Y.; Mutalib S.; Tian L.
منشور في: (2025) -
Behavioral Intrusion Prediction Model on Bayesian Network over Healthcare Infrastructure
بواسطة: 2-s2.0-85127342461
منشور في: (2022) -
Performance of Bayesian Model Averaging (BMA) for Short-Term Prediction of PM10 Concentration in the Peninsular Malaysia
بواسطة: Ramli N.; Abdul Hamid H.; Yahaya A.S.; Ul-Saufie A.Z.; Mohamed Noor N.; Abu Seman N.A.; Kamarudzaman A.N.; Deák G.
منشور في: (2023) -
Comparative Analysis of Hybrid 1D-CNN-LSTM and VGG16-1D-LSTM for Lung Lesion Classification
بواسطة: Jafery, وآخرون
منشور في: (2025)