A Novel Hybrid Model Based on CEEMDAN and Bayesian Optimized LSTM for Financial Trend Prediction
Financial time series prediction is inherently complex due to its nonlinear, nonstationary, and highly volatile nature. This study introduces a novel CEEMDAN-BO-LSTM model within a decomposition-optimization-prediction- integration framework to address these challenges. The Complete Ensemble Empiric...
出版年: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
主要な著者: | Sun, Yu; Mutalib, Sofianita; Tian, Liwei |
フォーマット: | 論文 |
言語: | English |
出版事項: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441772100001 |
類似資料
-
Improved Whale Optimization Algorithm with LSTM for Stock Index Prediction
著者:: Sun, 等
出版事項: (2025) -
Improved Whale Optimization Algorithm with LSTM for Stock Index Prediction
著者:: Sun Y.; Mutalib S.; Tian L.
出版事項: (2025) -
Behavioral Intrusion Prediction Model on Bayesian Network over Healthcare Infrastructure
著者:: 2-s2.0-85127342461
出版事項: (2022) -
Performance of Bayesian Model Averaging (BMA) for Short-Term Prediction of PM10 Concentration in the Peninsular Malaysia
著者:: Ramli N.; Abdul Hamid H.; Yahaya A.S.; Ul-Saufie A.Z.; Mohamed Noor N.; Abu Seman N.A.; Kamarudzaman A.N.; Deák G.
出版事項: (2023) -
Comparative Analysis of Hybrid 1D-CNN-LSTM and VGG16-1D-LSTM for Lung Lesion Classification
著者:: Jafery, 等
出版事項: (2025)