Water Quality Classification Using SVM And XGBoost Method
Various pollutants have been endangering water quality over the past decades. As a result, predicting and modeling water quality have become essential to minimizing water pollution. This research has developed a classification algorithm to predict the water quality classification (WQC). The WQC is c...
類似資料
-
Handling imbalanced dataset using SVM and k-NN approach
著者:: Wah Y.B.; Rahman H.A.A.; He H.; Bulgiba A.
出版事項: (2016) -
Digital image processing technique for palm oil leaf disease detection using multiclass SVM classifier
著者:: 2-s2.0-85050597503
出版事項: (2017) -
Predicting Ocean Current Temperature Off the East Coast of America with XGBoost and Random Forest Algorithms Using Rstudio
著者:: 2-s2.0-85198048471
出版事項: (2024) -
Prediction of Water Quality Classification of the Kelantan River Basin, Malaysia, Using Machine Learning Techniques
著者:: 2-s2.0-85127850257
出版事項: (2022) -
Machine Learning Models for Predicting Flood Events Using Weather Data: An Evaluation of Logistic Regression, LightGBM, and XGBoost
著者:: Maharina; Paryono T.; Fauzi A.; Indra J.; Sihabudin; Harahap M.K.; Rizki L.T.
出版事項: (2025)